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LECTURE 4

« The eigenproblem of a discrete system.

« Free vibration of the discrete system.

« Damping in civil engineering structures.

« Harmonically excited steady-state vibration in discrete
systems (direct method).

« The Orthogonality Principle of natural vibration, the
modal transformation method.

« Harmonic excitation in a one-degree-of-freedom system.

« The use of the modal transformation method for

analysing harmonically excited steady-state vibration in
multi-degree-of-freedom systems.
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Eigenproblem of a discrete system

Matrix equations of motion in the generalized coordinate

base
Bq+Cq+ Kq=F()
B B mass (inertia) matrix of a system
. C damping matrix of a system
. K stiffness matrix of a system
. F(1) vector of external generalized forces acting

on a system

« .49.q generalized coordinates, velocities and
accelerations vectors respectively
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Eigenproblem of a discrete system

The problem of free vibrations requires that the force vector be equal to zero in
equation of mation.
If the system is also undamped, the equation of motion can be written In form

Bij+Kq=0

For the free vibrations of the undamped structure, one can guess (Lucky Guess
Method) the form of the solutions of this equation of motion

q(7) = asin( @t + @)
Two times differentiation of this expression with respect to time leads to formula

j=-0'q

The substitution of these expressions to equation of metion gives

(K-»’B)q=0
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Eigenproblem of a discrete system

For any one natural frequency w,, (eigenvalue of A=w, ) such a solution exists

q=W;
That

(K-o 2B)w =0

nr
The vector w;, is called an eigenvector (i-th normal or natural mode of vibration
or modal shape). The eigenvector coordinates are generalized displacements,
which describe the modal shape, that is they specify how, for each natural
angular frequency w,, , the various elements of the system move in relation to
each other.

It is easy to prove that each non-zero column of the adjugate (adjoint) matrix

adiA | = adj(K— o°B)

is an eigenvector
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Eigenproblem of a discrete system

Proof:

Let us consider the formula for the inverse matrix L adjA,
" odetA,

This formula can be written in another form, i.e. A;' detA, =adjA

Premultiplication of this equation by matrix A and postmultiplication by any
non-zero vector v results in

detA,-v=A adjA ‘v

Since detA, =0 and designates a new vector b=adjA -v , this equation can
be written in the form

detA v=A, (adjA,-v)=Ab=(K-0 B)b=0
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Eigenproblem of a discrete system

As v could be any vector it could also be a versor, with 1 on j-th position. Then
the multiplication A v takes out j-th column from the adjoint matrix.
Comparing equation

detA, v=A_ (adiA,-v)=Ab=(K- o’ B)b=0

and 5
(K-@"B)q=0

one can write down 2
w, =b=ad(K- o, B)

The eigenvectors can be normalized
w{,mna =W ] /JVI

usually using the norms

Wi sons = Wi [N, N =lw|= mfmc|w‘ J o WN=fw|= W Bw,
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Modal and Spectral Matrices

For each value of elgenfrequency w,, (natural anaular freauency) satisfying the
characteristic equation one may solve equation (K-@.Biw, =0  This solution,
with an accuracy up to a constant multiplier (multiplicative constant), is the

eigenvector
q',: bl w a |
qu W
'l = . =
Tl |V

This solutions describe the normal modes (shapes) which may be conveniently
arranged in the columns of a matrix known as the modal matrix | that is
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Modal and Spectral Matrices

The n eigenvalues A =w,?can be assembled into a diagonal matrix Q7 = {»*}
which is known as a spectral matrix of the eigenproblem, that is

o, 0 0
Q! - (o'} = 0 (oj; 0
0 0 (of“

By using the modal and spectral matrices it is possible to assemble all of these
relations into a single matrix equation

KW =BWQ-
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Normal and Natural Mode of Vibration

» When a system is capable of vibrating with more than one
frequency, but is actually vibrating freely at only one of its possible
normal frequencies, the system is said to be vibratingin one of its
*normal modes.”™

» A normal mode of vibration is a mode of vibration that is uncoupled
from (i.e., can exist independently of ) other modes of vibration of a
system.

« When vibration of the system is defined as an eigenvalue problem,
the normal modes are the eigenvectors and the normal mode
frequencies are the eigenvalues.

+ The natural (normal) mode of vibration is a mode of vibration
assumed by a system when vibrating freely.

+ The mode of vibration associated with the lowest natural frequency
of a system is referred to as the first {basic) mode. The next higher
frequency is the second, and so on.
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Orthogonality of Normal Modes

(Orthogonality Principle)

» The most important property of the normal modes is their
orthogonality. For this reason the normal modes can be used to
uncouple the matrix equations of motion.

» The solution of a set of separate differential equations is
significantly easier than the solution of a set of coupled differential
equations.

« Premultiplicationof Eq. KW =BWQ" by matrix W' vields
equation

WKW =W BWQ*

+ After transposition of this Eq., and taking into account the symmetry

of matrices B and K, this Eg. can be writtenin form
WKW = QW' BW

» The left sides of these Egs.are the same, thus the right sides must

also be the same, that is
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Orthogonality of Normal Modes

(Orthogonality Principle)

W BWQ’ = Q°'W'BW
In general, this Eq. is true only if matrix W' BW is a diagonal matrix.

That matrix is called the principal masses matrix and its elements -
modal masses

WBW ={m_}

Substituting this Eq. into Eq. WKW=2'W'BW implies that matrix WKW
must also be a diagonal matrix (principal stiffnesses matrix) and its
elements - modal stiffnesses

WKW ={k_}={m_}{o’}



Orthogonality of Normal Modes
(Orthogonality Principle)

If the flexibility matrix is used to formulate the equation of motion, the
reduced equation of motion has the form

DBq+ q=0
where D is a flexibility matrix. Now eigenproblem can be formulated
(DB-o»"T)q=0

And consequently -
det(DB-o 1) =0
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Orthogonality of Normal Modes

(Orthogonality Principle)

Conclusions:

« It must be noticed that eigenvectors are orthogonal with
respect to both the mass and the stiffness matrix, but
eigenvectors are not orthogonal with respect to the
flexibility matrix.

« Each eigenvector is determined in terms of an arbitrary
constant and can normalized arbitrarily.

« If n>d (base of generalized coordinates is not minimal)
the eigenfrequency @ = oo can appear. These solutions
must be neglected.
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Natural Vibration

Ambiguity of Term “Natural Vibration”

The term “natural vibration™ is somewhat problematic due to the conventions of
Polish terminology. Following Langer [5], the Polish term “dreania wiasne™ (the lexical
equivalent of the English term “natural vibration") does net relate to a physical
phenomencn. It does not designate vibration, but a mathematical form of the general
selution (total integral) of an inhemogeneous differential equation of motion without
damping, Eq. (3.47), which describes a predispesition of the structure to vibrate freely
with accordance to natural freguencies and natural (normal) ferms of vibration.

In English terminalogy, the term “natural vibration™ appears predominantly in
connection to such terms as “freguency of natural vibration™ or “mode of natural
vibration”. This indicates that “natural vibration™ are identified with “free vibration™. As
Harris writes, “[t]he natural mode of vibration is a mode of vibration assumed by a
system when vibrating freely.”, [1]. Thus, the expression, as used in the English
terminclogy, clearly describes a physical phenomenan.

Therefore, the term “natural vibration” may be ambigucus, as it will have ane
meaning when used in the sense attached to it in English terminolegy, and a different
one if used as a translation of the Palish “drgania wigsne™. It is suggested that the term
“natural vibration” should be used uniformly in the meaning equivalent to free vibration
to avoid this ambiguity.
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Free Vibration

Undamped Free Vibration

» Free vibration (natural vibration) is a physical phenomenon which
occurs in an undamped MDOF system when there is no excitation and
the initial conditions are given: q(0)=q, and q(0)=q,

« |If the base of generalized coordinates is minimal ( n=d ) the solution

i
q(r) = Z%w,( s, sin@, 1+ ¢ cosa, 1) = W-{sino t}-s + W-{cosm t}-c

may be used to determinate the free vibration of the system where ,

sin n_lj’- m (sin &7 s @7 ... s @ 1) q,=We - c=W'q,

(s @ 1) - (cos ¢ cos &, .F ... cosar) - = s

RS B e=le, £ oo and  4,=W-e}s - s={o'}-Wiq,
Finally

sino t

q(7) =W {coso t} -\V"qo +W. ; \v-l“lo
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Damped Free Vibration

The equation of motion which describes damped free vibration has the
form

Bij+Cq+Kq=0

with initial conditions q0)=q, and q@=4d,

Usually it is convenient to assume that the damping matrix is
proportional to either the mass or the stiffness matrix, but the best

assumption is that the damping matrix is proportional to both of them
(Rayleigh damping),

C=xK+uB
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Damped Free Vibration

Modal Transformation Method

The equation of motion which describes damped free vibration has the
form

Bj+Cq+Kq=0

with initial conditions q0)=q, and q@=4d,

Usually it is convenient to assume that the damping matrix is
proportional to either the mass or the stiffness matrix, but the best

assumption is that the damping matrix is proportional to both of them
(Rayleigh damping),

C=xK+uB

where p is the dimensional damping parameter and k is
also a dimensional parameter called the retardation time.
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Damped Free Vibration

Modal Transformation Method

The transformation from the new set of coordinates to the generalized
coordinates , such as
q=Wr

is substituted into Eq.

By premultiplying the equation by the transposed modal matrix w!
and making use of the orthogonal properties of the modal matrix
(eigenvectors), the matrix equation has the form

fm}r+{c jr+{k jr=0
where fc.}= W CW

and
q, =Wr, q.=Wr,

Eq. is the matrix form of a set of uncoupled equations.
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Damped Free Vibration

Principal Coordinates System

» The coordinates by which it is possible to uncouple the MDOF
system, described by vector r, are called the principal coordinates
system.

» The principal coordinates vector can be achieved from the
generalized coordinates vector with the use of modal matrix W
transformation (q=Wr ).

+ The solution in the base of normal coordinates (in matrix notation)

has the form ; )
..mz{e-....w },, e S0 1 ]

where cosp o cos B

Jeﬂ.. cos(m t — ll)} — dia g{cw-,,f cos(ey,7— )
cosf cos g,

e«_( slnm,l = dia ewzo.,( sin Ot
m,cosf @, cosf
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Damped Free Vibration

Principal Coordinates System

after retransformation

qr)=W- {e""‘" s i) B)} -W-lg, + W- {e""‘" HRG,L } Wq,
cos p w_ cosf

The inverse modal matrix can be calculated without a formal inverse
procedure, since from the Orthogonality Principle results

Wl={m }'"WB={k,}'W'K

@
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Harmonic Forced Vibration

Direct Method

Let us assume that the force excitation vector is in the form
F(r) = F;sin et + F.. cos

In equation of motion
B+ Cq+Kq=F()

The steady-state response of equation of motion could be looked for
{Lucky Guess Method or method of undetermined coefficients) also in
harmonic form

q(7) = q.sin @f +q,. cos of

By substituting formulas into Equation of motion and then comparing
the terms at the sinusoidal and cosinusoidal components of the solution
respectively, the algebraic set of equations is achieved
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Harmonic Forced Vibration

Direct Method

(K-o'B)q, -oCq. =F,
oCq, +(K-o'B)q, =F. [

K-o'B -oC||qs | [F
oC K-o'B||qc| |F

If the influence of damping is negligible, Eq. is reduced to the simple
matrix form

(K-o'B)qs, =F;

which is valid for both the sinusoidal q, and the cosinusoidal q.
component of solution
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Harmonic Forced Vibration

Direct Method

Applying a procedure analogous to the one described previously, the set
of algebraic equations has the form

1-»°'DB -oDC || q. | | DE
@DC 1-o°DB || q.| |DF,
If damping matrix is C=0, this equation is simplified to the form

(I-®'DB)q, . =DF, .

which is valid for both the sinusoidal q, and the cosinusoidal q.
component of solution
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Harmonic Forced Vibration

Direct Method

Conclusions
+ Advantages of the Direct Method
in comparison to the Modal Transformation Method approach:

* Thereis no need to solve the eigenproblem to achieve the steady-
state response of the system.

» Thereis no need to assume that the damping matrix is proportional
to either the mass or the stiffness matrix or to both of them to
achieve the steady-state response of the system.

» Disadvantages of the Direct Method
in comparison to Modal Transformation Method approach:
« It is necessary to solve a doubled set of coupled algebraic equations.

+ It is impossible to reduce the base of coordinates used to the
determine the solution (the dynamic condensation cannot be
performed, see Chapter 3.18)
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Harmonic Forced Vibration

Modal Transformation Method

After substituting ¢ = “ I' into Eq. Of motion and then
premultiplicatingby W, the equation of motion has the form

W BWr+W CWr+W KWr=W'F=R()
Using the Orthogonality Principle and additionally

L) o

WICW= {Zu\.km } = diag(2a, V‘l‘ m_.)

the equation of motion takes the diagonal form

{m,}r + {20k ,m, }r+{k jr=R()
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Harmonic Forced Vibration
Modal Transformation Method

Consideringrelations and one can achieve
qs = Wih JW'F + W{h,JW’F_ = HF, + H.F,

qc = Wb, JWF. - Wih JW'F, = HF, - H.F,

or in matrix block form

= r

[QS] [ H, H; [Fs] h th=Wihiw
= - w

g -1, H,J F, ¢ H,-wh W

If damping influence is negligible q = HF

which is valid for both the sinusoidal and the cosinusoidal component of
solution, and ==

&, 0-x)
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Harmonic Forced Vibration
Modal Transformation Method

In the particular situation of a harmonic excitation

R(r)= W’ (E,sin wr + F_cos @) = R, sin ot + R_ cos or)
and
r(f) = rg sin @f + 1. cos of

ilt is possible to write r. = R+ {h, IR,
ro={hjR. - (h,jR,,

where th,} =diag(hy, 5, ‘s Iyy) fhy}=diag(h, Iy, 0 hy)
,":L l-l],' h, :L 2“:"1
Yk, Q=g+ Qan)t Y k-0 £ Qan)?
n=eje,

nominator/denominator
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Harmonic Forced Vibration

Modal Transformation Method

= Conclusions

» Advantages of the Modal Transformation Method
in comparison to the Direct Method approach:

« It is possible to use this approach for another type of forcing
excitations, i.e. not for harmonic excitation only.

+ The whole analysis can be conducted with the use of SDOF systems
only

+ It is possible to arbitrarily specify the damping ratios for each mode.

» Disadvantages of the Modal Transformation Method
in comparison to the Direct Method approach:

» The eigenproblem analysis must be accomplished

+ The assumption is necessary that the damping matrix is proportional
to either the mass or the stiffness matrix or to both of them to
achieve the steady-state response of the system.



