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+ Second order Lagrange’s equations.
+ Systems of coordinates and their transformations.

* The energetic balance and the matrix eguation of motion of a
discrete system.

» Elastic bonds in discrete bar systems, the definition of the
displacement and stiffness matrices.

+ Examples of calculating the displacement matrix in statically
determinate and indeterminate systems,
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Lagrangian Equations

In MDOF systems formulating a differential equation of motion for a vibrating
system can be achieved in terms of the energies of the system with the use of
the Lagrangian equations
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or in vector notation

d - > -
(—hgmd E Q) - grad E (q) + grad ®(q) + grad E (q) = grad W{q)

where
E_ - total kinetic energy of the system
F - total potential energy of the system
¢ - Rayleigh Dissipation Function
I - virtual work of external generalized forces
q, . ¢, - generalized coordinate (displacement) and velocity
q. q - generalized coordinates and velocity vectors
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Lagrangian Equations

In the case of small vibration around the equilibrium point the kinetic energy in
general does not depend on generalized displacements g, . Then

0F;

E’o grad E,(q) =0

and the Lagrangian equations take the form
d ¢E, . édb " CE _aw
dr ég, 0q, ©0q, 0g, :
or in vector notation

d . ; ¥
-(;gmdf-,(q)+grad¢(q)+ grad E (q) = gradW(q)
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The potential energy

The potential energy l St
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Stiffness Matrix in Local Coordinates Base of Spring Elements il ‘Tf”
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0 0 K
Transformation from Generalized to Local Coordinates
u=A4.q

Ay is the transformation matrix whose elements depend on the
configuration of the structure only; the dimension of this transformation matrix

is (number of local coordinates of spring elements)x (number of generalized
coordinates)
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Stiffness Matrix in Generalized

Coordinates Base

The potential energy in the generalized base of coordinates
(after substitutionof ¥ =A,q ) yields the expression

1 1 1 1
E,=—Yku;=—u"{kju=—q A;{k}A,q=—q'Kq
25 2 2 2

As it can be seen, the potential energy is given by the positive-definite
quadratic form of the Lagrange’s generalized coordinates q , where K
is the stiffness matrix. 5tiffness matrix is non-singular, symmetric and
positive-definite, thus det K =0 and can be achieved from formula

K=A] {kf A,
The flexibility matrix is inverse to stiffness matrix
D=K"
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The kinetic energy

The kinetic energy of the whole system can be expressed by
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Inertia Matrix in Local Coordinates Base of Mass Centers
m G 0
o y 0
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Transformation from Generalized to Local Coordinates

u=4,q
A. is the transformation matrix whose elements depend on the
configuration of the structure only; the dimension of this transformation matrix
is (number of local coordinates of mass elements) x (number of generalized
coordinatesn = d)
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Inertia Matrix in Generalized

Coordinates Base

The kinetic energy in the generalized base of coordinates
(after substitution of u=A_q ) yields the expression

_l '2_1’1’ -_l.]’ T ,_l'r ;
E*_zgm.)"j —2ll {m}u"?q Am{m}Amq_zq Bq

As it can be seen, the kinetic energy is given by the positive-definite quadratic
form of the of Lagrange’s generalized coordinates velocity, where

B=A) {m} A,

m
Where B is the square and symmetric matrix of inertia in a generalized
coordinate base. In a minimal base of generalized coordinates n =d , matrix B
is non-singular and positive-definite, thus detB= 0.
If u>d,inertia matrix is non-negatively definite and singular.
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lllustrative Example

This is the plane rigid body, which
mass Is m and polar mass moment of
inertia about the axe through the mass
center point J,; is given. The example
A e shows haw to determine a mass matrix
.\,,% = ~ in the generalized coordinate base.

m 0 0
{m} =diag(m m J)=|0 m 0
u=A_4q 0 0 J,

1 0 -x] m 0 — m 0 -5

u=fu, a, wf . o ¢ ’

A =0 1 » B-A {n} A~ 0 m my, -l 0 mw S
a=[g Qs]!

0 0 1 -, oy, axi-al)+d,| |-S0 0§ 0,
S, =myg static moment of mass about the axis x
S, =mv, static moment of mass about the axis y

polar mass moment of inertia about the axis through
the dynamic center point - A

Jo=mixy + Vi) +Jo
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Damping Matrix in Generalized

Coordinates Base

Rayleigh Dissipation Function describes the power of resistance forces, i.e.
the work of these forces in time, which occurs in systems performing small
oscillations. These forces are assumed to be proportional to velocities. The
Rayleigh dissipation function, alse known as the dissipation function, is given by
the positive-definite quadratic form of the generalized velocities q
-l ,:_l,r .l.rr ._l.r -
¢-§§cjllj —Eu {c]uSq A {c}Adq-Eq Cq
¢q 0 0 -]
() =dingle, ¢, ¢ ..)= & & B =A T
o Bl o [ u=Aa4 C=Ay { Ay
A, is the transformation matrix whose elements depend on the
configuration of the structure only; the dimension of this

transformation matrix is (number of local coordinates of damped
elements)x (number of generalized coordinates n=d )
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Excitation Forces

Work W is the transfer of energy that occurs when a force acts on a body, and
is calculated as a dot product of the vector of force F and displacement q
(displacement of the point the force is acting en). If a body is moving in such a
way that the force has a component in a direction perpendicular to the
direction of the body's motion, the work of that component is equal to zero. In
any situation, the work is given by the linear form of the coordinates q

W=y Pu =u"P=q'ATP=q'F
J
Excitation Force Vector in Local Coordinates Base P= [P, P 2 Ps --']r

Excitation Force Vector in Generalized Coordinates Base F= A,T P
u=A;q

Al s the transformation vector from generalized to local coordinates
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Equation of Motion

After substitution of the into Lagrangian Equations, and after differentiation
of these expressions with respect to each chosen coordinate, one can receive
an number of equations of motion in the generalized coordinate base. In the
matrix form, this system may be written as

Bq + Cq i Kq - F ( t) Displacement Method

DBq < DCq + q= DF({) Force Method



