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+ Examples of calculating the stiffness matrices in geometrically
determinate and indeterminate systems.

+ Examples of forming an equation of motion of a discrete system: a
beam supporting structure for a rotating motor.

» Examples of determining the mass matrix and the generalized vector
of the exciting forces in discrete bar systems.
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lllustrative Example 2DFS
System with Inertial Coupling

two-degree-of-freedom system
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lllustrative Example 2DFS
System with Static Coupling

two-degree-of-freedom system
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System with Simultaneous Static and
Inertial Coupling

« As the type of coupling depends on the choice of the
generalized coordinates system, it is possible to choose
such generalized coordinates that both static and inertial
coupling will occur simultaneously.

« It seems also to be possible to find such a generalized
coordinate system for which the equations of motion will
be uncoupled.
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System without Coupling

(Decoupled System)

» The generalized coordinates system for
which there is no coupling at all is called
the principal generalized coordinates
system.
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Conclusions

Conclusions:

» the coupling of the equations of motion in MDOF systems
is not a distinctive feature of the system but depends on
the choice of the generalized coordinate system

« the MDOF system equations of motion can be coupled in
three ways: inertially, elastically or inertially and
elastically simultaneously

« uncoupled systems of equations, in which no coupling
exists at all, are also possible
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Stiffness Matrix in an Expanded Base

of Coordinates

subvector of dynamic degrees of freedom

§ q q=lg, ..- ¢’

X subvector of static (geometric) degrees of freedom
x=[x ... x,,gd]r

where Degree of Kinematic (Geometric) Indeterminacy in a Dynamic Sense
is defined Mg =Ny — d
The stiffness matrix in an expanded base of coordinates is defined as

’ qu qu dimK  =dxd dmK  =dxn,
Ky = Kfq
Koo 0

dim K,_q =N % d dim K“ = Mg X Mg
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lllustrative Example

statically and kinematically indeterminate plane frame structure

Dynamic scheme of the frame DATA

mPo a=3m m=500kg
3 o8l 2 = 2
m, oL/ E =200GPa J,=20.8kgm
£ o s S 1=9800cm*(1300) A, =0.25m
22 EI = const h, =0.40m
EJ=const Ed=x P, =1kN
S GA== ®=30rad’s
Number of degrees of freedom
o 2o a a d:da+d'=29l=3
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Static Condensation

The equilibrium conditions of the Displacement Method in the expanded base of
coordinates has the form

K. .q+K_,x=0 fromhere x=-K_ K, q
From the identity K, a+K x=Kq

after substituting X, one can achieve the stiffness matrix in the base of
generalized coordinates from formula

K=K, -K,K K,

For an SDOF system the kinematic indeterminacy degree " =! from one can
find the equivalent stiffness coefficient

k K

A
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lllustrative Example

statically and kinematically indeterminate plane frame structure

Dynamic scheme of the frame Force Method
P The degree of static indeterminacy of a
P2 system (number of hyperstatics)
mf [ 7. nmy=e-3=4-31=1
I o
=1 1% 1 Scheme of coordinates.
v 0,
EJ=const /’ 2.
3 b 1
2

T a a

lllustrative Example

statically and kinematically indeterminate plane frame structure

Dynamic scheme of the frame Displacement Method
The degree of static geometric Indeterminacy
_mo ng-nAsn‘_-2+z-4
m.] 1 i The degree of static geometric indeterminacy

QQI_I_, L = | in a dynamic sense

Ny =ty —d=4-3=1
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lllustrative Example

statically and kinematically indeterminate plane frame structure

Displacement Method

Dynamic scheme of the frame
The degree of static geometric Indeterminacy
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ml |7 The degree of static geometric indeterminacy
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Stiffnes matrix

Static Condensation yields the stiffness matrix in generalized coordinates base

S -1 =
K=K -K KK, =
(6ET. _3EF EI'
;’EI gg 511 6.53-10° —1.09:10° -2.18-10°
=|-"% = : |=|-1.09-10° 082-10° 1.09-10°
2F 8P 2P S e S
B B om| [T21800° 109:10° 411410
|7 2F 3 |

Mass matrix

Generalized and local coordinates associated with mass center

. u.
q_./< '{ m 0 0
A u'y <:| m} =diaglm m J;)=|0 m 0

\7* I 0 0 J,|
4

4, 1, 1 0 0| g

a=|q, u=Aq - (=0 1 k| ¢
7 w | [0 0 1 |g|
m 0 0 (500 0 i

B=A! -fm}-A,=|0 m mh, |[=| 0 500 125
0 mh, J,+mh; | 0 125 52.08|
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Generalized Forces Vector

h, —>h,
— P, cos pt 0 = 1
F=| Pysinpt |[=| P, [sinpt+| 0 |cospr=Fsin pt+F_cos pt
Foh,sinpt| |Fyh, 0
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Matrix Equation of Motion

Bq + Kq = F(¢)

m 0 0 Gy
0 m nhy, g [+
0 mhy Jy+ mhg || 4

6EI/I® -3EIf2P -EIfI’ Tq, 0 -P
—3E1/2P SEIfsP EIf2P |g,|=| P, (sinpr+| 0 |cospt

-EI{I*  EIf2F 9EIBI g | [Byh, 0



